A Memory Enhanced Evolutionary Algorithm for Dynamic Scheduling Problems
نویسندگان
چکیده
This paper describes a memory enhanced evolutionary algorithm (EA) approach to the dynamic job shop scheduling problem. Memory enhanced EAs have been widely investigated for other dynamic optimization problems with changing fitness landscapes, but only when associated with a fixed search space. In dynamic scheduling, the search space shifts as jobs are completed and new jobs arrive, so memory entries that describe specific points in the search space will become infeasible over time. The relative importances of jobs in the schedule also change over time, so previously good points become increasingly irrelevant. We describe a classifier-based memory for abstracting and storing information about schedules that can be used to build similar schedules at future times. We compared the memory enhanced EA with a standard EA and several common EA diversity techniques both with and without memory. The memory enhanced EA improved performance over the standard EA, while diversity techniques decreased performance.
منابع مشابه
An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملA Reliability based Modelling and Optimization of an Integrated Production and Preventive Maintenance Activities in Flowshop Scheduling Problem
Traditional scheduling problems with the batch processing machines (BPM) assume that machines are continuously available, and no time is needed for their preventive maintenance (PM). In this paper, we study a realistic variant of flowshop scheduling which integrates flow shop batch processing machines (FBPM) and preventive maintenance for minimizing the makespan. In order to tackle the given pr...
متن کاملPareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008